[image: ]



Data Engineering Guide

Structured Streaming Guide




Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice


Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team



1. Executive Summary
Structured Streaming represents Apache Spark's unified approach to stream processing, treating streaming data as an unbounded table that continuously grows as new data arrives. This programming model enables developers to express streaming computations using the same DataFrame and SQL APIs used for batch processing, dramatically reducing the complexity of building real-time data pipelines.
Why Structured Streaming?
Traditional stream processing systems require specialized programming models and often sacrifice either exactly-once semantics or low latency. Structured Streaming addresses these challenges through several key innovations:
Unified Batch and Streaming: Write your logic once and run it in batch or streaming mode. This eliminates the need to maintain separate codebases and reduces testing overhead.
Exactly-Once Guarantees: Through checkpoint-based recovery and idempotent sinks, Structured Streaming provides end-to-end exactly-once semantics—even in the face of failures.
Event-Time Processing: Native support for event-time windows and watermarks enables accurate processing of late-arriving data, essential for real-world scenarios where data arrives out of order.
Declarative API: Express complex streaming operations like windowed aggregations, stream-stream joins, and deduplication using familiar SQL or DataFrame operations.
When to Use Structured Streaming
Structured Streaming excels in scenarios requiring:
Real-time data ingestion into Delta Lake
Continuous ETL/ELT pipelines
Near-real-time dashboards and alerting
Event-driven architectures
IoT data processing at scale
This guide provides comprehensive coverage from basic concepts to production deployment patterns.
2. Streaming Architecture
Understanding the underlying architecture helps in designing efficient streaming applications and troubleshooting issues.
2.1 Processing Models
Structured Streaming offers different processing modes to balance latency, throughput, and resource utilization.
┌─────────────────────────────────────────────────────────────────────────────┐
│                    STRUCTURED STREAMING PROCESSING MODES                     │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  MICRO-BATCH PROCESSING (Default)                                           │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  Source ──▶ [Batch 1] ──▶ [Batch 2] ──▶ [Batch 3] ──▶ Sink        │    │
│  │             ~100ms         ~100ms         ~100ms                    │    │
│  │                                                                     │    │
│  │  • Exactly-once guarantees via checkpointing                       │    │
│  │  • Good balance of latency and throughput                          │    │
│  │  • Recommended for most production use cases                        │    │
│  │  • Supports all DataFrame operations                                │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
│  TRIGGER MODES                                                               │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  processingTime="10 seconds"  - Fixed interval between batches     │    │
│  │  availableNow=True            - Process all available, then stop   │    │
│  │  once=True (deprecated)       - Single batch then stop             │    │
│  │  continuous="1 second"        - Low-latency continuous processing  │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
Micro-Batch Processing: The default and most commonly used mode. Data is processed in small batches, typically completing in 100ms to several seconds depending on data volume and complexity. This mode provides the strongest guarantees and supports all streaming operations.
Available Now Trigger: Ideal for incremental batch processing. Processes all available data and then stops, making it perfect for scheduled jobs that need to catch up on accumulated data.
Continuous Processing: Provides millisecond-level latency but with limited operator support. Use only when sub-second latency is critical and you can work within its constraints.
2.2 Checkpoint Architecture
Checkpoints are the foundation of fault tolerance in Structured Streaming. They persist the state required to recover a stream after failure.
Checkpoint Directory Structure:
/checkpoints/my_stream/
├── commits/                  # Completed batch markers
│   ├── 0                     # Batch 0 committed successfully
│   ├── 1                     # Batch 1 committed successfully
│   └── ...
├── offsets/                  # Source offsets for each batch
│   ├── 0                     # Offsets to process in batch 0
│   ├── 1                     # Offsets to process in batch 1
│   └── ...
├── sources/                  # Source-specific metadata
│   └── 0/
│       └── rocksdb/          # RocksDB for source state
├── state/                    # Stateful operation state
│   └── 0/
│       └── default/          # State for partition 0
└── metadata                  # Stream metadata (query ID, etc.)
Critical Checkpoint Considerations:
Location: Store checkpoints in durable cloud storage (S3, ADLS, GCS), never on local disk
Performance: Checkpoint location should have low latency access from the cluster
Uniqueness: Each streaming query must have a unique checkpoint location
Recovery: On restart, the stream automatically recovers from the last committed batch
2.3 Exactly-Once Semantics
Structured Streaming achieves exactly-once semantics through the combination of:
Replayable Sources: Sources like Kafka maintain offsets, allowing replay from any position
Idempotent Sinks: Delta Lake writes are idempotent based on transaction IDs
Checkpointing: State is persisted atomically with each batch completion
┌─────────────────────────────────────────────────────────────────────────────┐
│                    EXACTLY-ONCE PROCESSING FLOW                              │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  1. Read offsets    ──▶  Read source offsets (Kafka, files, etc.)          │
│  2. Process batch   ──▶  Transform data (no side effects)                   │
│  3. Write output    ──▶  Write to sink (idempotent)                        │
│  4. Commit offsets  ──▶  Atomically commit offsets + state                 │
│                                                                              │
│  On Failure:                                                                │
│  - Restart from last committed offset                                       │
│  - Reprocess the failed batch                                               │
│  - Idempotent sink handles duplicate writes                                │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
3. Streaming Sources
Sources are the entry points for data into your streaming pipeline. Each source type has specific configuration requirements and best practices.
3.1 Apache Kafka Source
Kafka is the most common streaming source for enterprise applications. Understanding its configuration options is essential for production deployments.
Basic Kafka Consumer Configuration:
# Basic Kafka consumer setup
kafka_df = (spark.readStream
    .format("kafka")
    .option("kafka.bootstrap.servers", "broker1:9092,broker2:9092")
    .option("subscribe", "topic1,topic2")
    .option("startingOffsets", "earliest")
    .load()
)
Production Kafka Configuration with Security:
Kafka sources include native messages with key, value, topic, partition, offset, and timestamp. Security configuration is critical for production environments.
# Production-grade Kafka configuration
kafka_df = (spark.readStream
    .format("kafka")
    # Broker connection
    .option("kafka.bootstrap.servers", kafka_brokers)
    .option("subscribe", "orders,customers")  # Multiple topics
    # Alternative: .option("subscribePattern", "order.*") for pattern matching

    # Starting position options:
    # "earliest" - Start from beginning (first run only)
    # "latest" - Start from current position
    # JSON: '{"topic1":{"0":23,"1":45}}' - Specific offsets
    .option("startingOffsets", "earliest")

    # Security: SASL_SSL authentication
    .option("kafka.security.protocol", "SASL_SSL")
    .option("kafka.sasl.mechanism", "PLAIN")
    .option("kafka.sasl.jaas.config",
            f'org.apache.kafka.common.security.plain.PlainLoginModule required '
            f'username="{api_key}" password="{api_secret}";')

    # Performance tuning
    .option("maxOffsetsPerTrigger", "100000")    # Rate limit per trigger
    .option("minPartitions", "10")               # Minimum Spark partitions
    .option("kafka.fetch.max.bytes", "52428800") # 50MB max fetch

    # Error handling
    .option("failOnDataLoss", "false")  # Continue if offsets are unavailable
    .load()
)
Parsing Kafka Messages:
Kafka messages arrive as binary key/value pairs. Transform them into structured data for processing.
from pyspark.sql import functions as F
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, TimestampType

# Define schema for JSON payload
order_schema = StructType([
    StructField("order_id", StringType(), True),
    StructField("customer_id", StringType(), True),
    StructField("amount", DoubleType(), True),
    StructField("order_time", TimestampType(), True)
])

# Parse Kafka messages
parsed_df = (kafka_df
    .selectExpr(
        "CAST(key AS STRING) as key",
        "CAST(value AS STRING) as json_value",
        "topic",
        "partition",
        "offset",
        "timestamp as kafka_timestamp"
    )
    .select(
        F.col("key"),
        F.from_json(F.col("json_value"), order_schema).alias("data"),
        F.col("topic"),
        F.col("kafka_timestamp")
    )
    .select("key", "data.*", "topic", "kafka_timestamp")
)
3.2 Auto Loader (Cloud Files)
Auto Loader is Databricks' recommended approach for incrementally ingesting files from cloud storage. It automatically tracks processed files and handles schema evolution.
Auto Loader Architecture:
Auto Loader uses either directory listing or cloud provider notifications to detect new files:
Directory Listing: Scans the directory periodically (simpler, works everywhere)
Notifications: Uses cloud events for immediate detection (more efficient at scale)
# Auto Loader with comprehensive configuration
auto_loader_df = (spark.readStream
    .format("cloudFiles")
    .option("cloudFiles.format", "json")  # Also: csv, parquet, avro, text

    # Schema handling
    .option("cloudFiles.schemaLocation", "/checkpoints/orders/schema")
    .option("cloudFiles.inferColumnTypes", "true")
    .option("cloudFiles.schemaEvolutionMode", "addNewColumns")  # Handle new fields
    .option("cloudFiles.schemaHints", "id LONG, amount DECIMAL(18,2)")

    # Performance tuning
    .option("cloudFiles.maxFilesPerTrigger", "1000")
    .option("cloudFiles.maxBytesPerTrigger", "10g")

    # Use notifications for large-scale ingestion (S3, ADLS, GCS)
    .option("cloudFiles.useNotifications", "true")

    # Error handling
    .option("cloudFiles.rescuedDataColumn", "_rescued_data")  # Capture malformed data
    .load("/mnt/landing/orders/")
)

# Enrich with metadata
enriched_df = (auto_loader_df
    .withColumn("_ingestion_timestamp", F.current_timestamp())
    .withColumn("_source_file", F.input_file_name())
)
Schema Evolution Modes:
	Mode
	Behavior

	`addNewColumns`
	Automatically add new columns to schema

	`rescue`
	Put unmatched data in rescued column

	`failOnNewColumns`
	Fail stream if new columns detected

	`none`
	Ignore new columns



3.3 Delta Lake as Streaming Source
Delta Lake tables can serve as streaming sources, enabling chain reactions through multi-hop architectures.
# Stream from Delta table
delta_stream = (spark.readStream
    .format("delta")
    .option("ignoreChanges", "true")   # Ignore updates, process appends only
    .option("ignoreDeletes", "true")   # Ignore deletes
    .option("maxFilesPerTrigger", "100")
    .option("startingVersion", "0")    # Or "startingTimestamp"
    .table("bronze.events")
)

# Stream with Change Data Feed (CDC)
# Requires: ALTER TABLE source_table SET TBLPROPERTIES (delta.enableChangeDataFeed = true)
cdc_stream = (spark.readStream
    .format("delta")
    .option("readChangeFeed", "true")
    .option("startingVersion", "latest")
    .table("source_table")
)

# Process CDC changes - filter for relevant change types
processed_cdc = cdc_stream.filter(
    F.col("_change_type").isin(["insert", "update_postimage"])
)
3.4 Rate Source for Testing
The rate source generates synthetic data for testing streaming pipelines without external dependencies.
# Generate test data stream
rate_stream = (spark.readStream
    .format("rate")
    .option("rowsPerSecond", "1000")
    .option("rampUpTime", "10s")      # Gradually increase rate
    .option("numPartitions", "10")
    .load()
)

# Add realistic test data
test_stream = (rate_stream
    .withColumn("customer_id", (F.rand() * 1000).cast("int"))
    .withColumn("amount", F.round(F.rand() * 1000, 2))
    .withColumn("event_type",
        F.array(F.lit("click"), F.lit("view"), F.lit("purchase"))[
            (F.rand() * 3).cast("int")
        ])
    .withColumn("event_time", F.current_timestamp())
)
4. Streaming Sinks
Sinks define where processed data lands. Choosing the right sink and configuration is critical for reliability and performance.
4.1 Delta Lake Sink
Delta Lake is the recommended sink for most Databricks streaming applications due to its ACID guarantees and performance optimizations.
Basic Delta Sink:
# Simple append to Delta table
query = (streaming_df.writeStream
    .format("delta")
    .outputMode("append")
    .option("checkpointLocation", "/checkpoints/my_stream")
    .toTable("silver.events")
)
Production Delta Sink Configuration:
# Production-optimized Delta sink
query = (streaming_df.writeStream
    .format("delta")
    .outputMode("append")
    .option("checkpointLocation", "/checkpoints/silver_events")

    # Schema evolution handling
    .option("mergeSchema", "true")

    # Trigger configuration
    .trigger(processingTime="30 seconds")
    # Alternatives:
    # .trigger(availableNow=True)      # Process all available then stop
    # .trigger(continuous="1 second")  # Low-latency continuous

    .toTable("silver.events")
)
Using foreachBatch for Complex Operations:
For operations that require batch-level logic (like MERGE/UPSERT), use foreachBatch.
from delta.tables import DeltaTable

def upsert_to_delta(batch_df, batch_id):
    """Perform MERGE operation for each micro-batch."""
    if batch_df.isEmpty():
        return

    target_table = DeltaTable.forName(spark, "silver.customers")

    (target_table.alias("target")
        .merge(
            batch_df.alias("source"),
            "target.customer_id = source.customer_id"
        )
        .whenMatchedUpdate(set={
            "name": "source.name",
            "email": "source.email",
            "updated_at": "source.updated_at"
        })
        .whenNotMatchedInsertAll()
        .execute()
    )

query = (streaming_df.writeStream
    .foreachBatch(upsert_to_delta)
    .option("checkpointLocation", "/checkpoints/customer_upsert")
    .trigger(processingTime="1 minute")
    .start()
)
4.2 Kafka Sink
Write processed results back to Kafka for downstream consumers.
# Write to Kafka topic
query = (streaming_df
    .select(
        F.col("customer_id").cast("string").alias("key"),
        F.to_json(F.struct("*")).alias("value")
    )
    .writeStream
    .format("kafka")
    .option("kafka.bootstrap.servers", kafka_brokers)
    .option("topic", "processed_events")
    .option("checkpointLocation", "/checkpoints/kafka_sink")
    # Security options (same as source)
    .option("kafka.security.protocol", "SASL_SSL")
    .start()
)
4.3 Custom Sinks with foreach/foreachBatch
For integrations with external systems, use foreach or foreachBatch.
# foreachBatch for batch-level API calls
import requests

def write_to_api(batch_df, batch_id):
    """Send batch to external API."""
    if batch_df.isEmpty():
        return

    rows = batch_df.collect()
    payload = [r.asDict() for r in rows]

    response = requests.post(
        "https://api.example.com/events",
        json=payload,
        headers={"Authorization": f"Bearer {api_token}"}
    )

    if response.status_code != 200:
        raise Exception(f"API error: {response.status_code} - {response.text}")

query = (streaming_df.writeStream
    .foreachBatch(write_to_api)
    .option("checkpointLocation", "/checkpoints/api_sink")
    .trigger(processingTime="30 seconds")
    .start()
)
5. Stateful Stream Processing
Stateful operations maintain information across batches, enabling aggregations, joins, and deduplication.
5.1 Windowed Aggregations
Windows group events by time ranges for aggregation. Understanding window types is essential for time-series analytics.
Tumbling Windows: Non-overlapping, fixed-size windows.
# Count events per 5-minute window per customer
tumbling_df = (streaming_df
    .withWatermark("event_time", "10 minutes")
    .groupBy(
        F.window("event_time", "5 minutes"),  # 5-minute tumbling window
        "customer_id"
    )
    .agg(
        F.count("*").alias("event_count"),
        F.sum("amount").alias("total_amount"),
        F.avg("amount").alias("avg_amount")
    )
)
Sliding Windows: Overlapping windows for smoothed metrics.
# 10-minute window, sliding every 5 minutes
sliding_df = (streaming_df
    .withWatermark("event_time", "10 minutes")
    .groupBy(
        F.window("event_time", "10 minutes", "5 minutes"),
        "customer_id"
    )
    .agg(F.count("*").alias("event_count"))
)
Session Windows: Dynamic windows based on activity gaps.
# Group events into sessions with 10-minute inactivity gap
session_df = (streaming_df
    .withWatermark("event_time", "30 minutes")
    .groupBy(
        F.session_window("event_time", "10 minutes"),
        "user_id"
    )
    .agg(
        F.count("*").alias("events_in_session"),
        F.min("event_time").alias("session_start"),
        F.max("event_time").alias("session_end")
    )
)
5.2 Watermarking for Late Data
Watermarks define how long to wait for late-arriving data before finalizing window results.
# Events up to 10 minutes late will still be processed
streaming_df_with_watermark = (streaming_df
    .withWatermark("event_timestamp", "10 minutes")
)

# How watermarks work:
# max_event_time_seen - watermark_delay = watermark_threshold
# Example: If max event time seen is 10:30 AM
#          Watermark delay is 10 minutes
#          Watermark threshold is 10:20 AM
#          Events with event_time < 10:20 AM are dropped
Watermark Guidelines:
	Scenario
	Recommended Watermark

	Real-time dashboards
	1-5 minutes

	IoT device data
	10-30 minutes

	Mobile app events
	1-24 hours

	Batch-like streaming
	Hours to days



5.3 Stream-Stream Joins
Join two streaming DataFrames with time-based constraints.
# Define streams with watermarks
orders_stream = (spark.readStream.table("bronze.orders")
    .withWatermark("order_time", "10 minutes")
)

payments_stream = (spark.readStream.table("bronze.payments")
    .withWatermark("payment_time", "10 minutes")
)

# Inner join with time constraint
joined_df = orders_stream.join(
    payments_stream,
    F.expr("""
        order_id = payment_order_id AND
        payment_time BETWEEN order_time AND order_time + INTERVAL 1 HOUR
    """),
    "inner"
)

# Left outer join (orders without payments within time window)
left_joined_df = orders_stream.join(
    payments_stream,
    F.expr("""
        order_id = payment_order_id AND
        payment_time BETWEEN order_time AND order_time + INTERVAL 1 HOUR
    """),
    "leftOuter"
)
5.4 Streaming Deduplication
Remove duplicate events based on unique identifiers.
# Deduplicate within watermark window (recommended)
deduplicated_df = (streaming_df
    .withWatermark("event_time", "1 hour")
    .dropDuplicatesWithinWatermark(["event_id"])
)

# Note: dropDuplicates without watermark keeps all state indefinitely
# Only use for low-cardinality keys or with state cleanup
6. Error Handling and Recovery
Robust error handling ensures streaming pipelines survive real-world conditions.
6.1 Checkpoint Recovery
Streams automatically recover from checkpoints on restart.
# Start a stream with checkpoint
query = (streaming_df.writeStream
    .format("delta")
    .option("checkpointLocation", "/checkpoints/critical_stream")
    .start()
)

# After failure, restart with same code - automatic recovery
# To start fresh (lose exactly-once), delete checkpoint:
# dbutils.fs.rm("/checkpoints/critical_stream", recurse=True)
6.2 Dead Letter Queue Pattern
Handle malformed records without failing the stream.
def process_with_dlq(batch_df, batch_id):
    """Process batch with dead letter queue for failures."""
    from pyspark.sql.functions import col

    # Validate records
    valid_records = batch_df.filter(
        col("amount").isNotNull() &
        col("customer_id").isNotNull()
    )

    invalid_records = batch_df.filter(
        col("amount").isNull() |
        col("customer_id").isNull()
    )

    # Write valid records to target
    if valid_records.count() > 0:
        valid_records.write.format("delta").mode("append").saveAsTable("silver.events")

    # Write invalid records to DLQ
    if invalid_records.count() > 0:
        (invalid_records
            .withColumn("error_reason", F.lit("missing_required_fields"))
            .withColumn("batch_id", F.lit(batch_id))
            .withColumn("error_time", F.current_timestamp())
            .write.format("delta").mode("append").saveAsTable("quarantine.events")
        )

query = (streaming_df.writeStream
    .foreachBatch(process_with_dlq)
    .option("checkpointLocation", "/checkpoints/with_dlq")
    .start()
)
6.3 Schema Evolution Handling
Handle schema changes gracefully with Auto Loader.
streaming_df = (spark.readStream
    .format("cloudFiles")
    .option("cloudFiles.format", "json")
    .option("cloudFiles.schemaLocation", "/checkpoints/schema")

    # Schema evolution options
    .option("cloudFiles.schemaEvolutionMode", "addNewColumns")
    .option("cloudFiles.rescuedDataColumn", "_rescued_data")
    .load("/landing/data/")
)

# Check for schema issues
processed_df = (streaming_df
    .withColumn("has_schema_issues", F.col("_rescued_data").isNotNull())
)
7. Production Patterns
7.1 Multi-Hop (Medallion) Architecture
Implement bronze-silver-gold patterns with streaming.
# Bronze: Raw ingestion
bronze_query = (spark.readStream
    .format("cloudFiles")
    .option("cloudFiles.format", "json")
    .option("cloudFiles.schemaLocation", "/checkpoints/bronze/schema")
    .load("/landing/events/")
    .withColumn("_ingestion_time", F.current_timestamp())
    .withColumn("_source_file", F.input_file_name())
    .writeStream
    .format("delta")
    .option("checkpointLocation", "/checkpoints/bronze/events")
    .trigger(availableNow=True)  # Or processingTime for continuous
    .toTable("bronze.events")
)

# Silver: Cleansed and validated
silver_query = (spark.readStream
    .table("bronze.events")
    .filter(F.col("event_id").isNotNull())
    .withColumn("event_date", F.to_date("event_timestamp"))
    .dropDuplicatesWithinWatermark(["event_id"])
    .writeStream
    .format("delta")
    .option("checkpointLocation", "/checkpoints/silver/events")
    .toTable("silver.events")
)

# Gold: Aggregated for analytics
gold_query = (spark.readStream
    .table("silver.events")
    .withWatermark("event_timestamp", "1 hour")
    .groupBy(
        F.window("event_timestamp", "1 hour"),
        "event_type"
    )
    .agg(F.count("*").alias("event_count"))
    .writeStream
    .format("delta")
    .outputMode("append")
    .option("checkpointLocation", "/checkpoints/gold/hourly_events")
    .toTable("gold.hourly_events")
)
7.2 Monitoring Streaming Queries
Implement comprehensive monitoring for production streams.
# Monitor query progress
query = streaming_df.writeStream.format("delta").start()

import time

while query.isActive:
    progress = query.lastProgress
    if progress:
        print(f"Batch ID: {progress['batchId']}")
        print(f"Input rows: {progress['numInputRows']}")
        print(f"Processing rate: {progress['processedRowsPerSecond']:.2f} rows/sec")
        print(f"Batch duration: {progress['batchDuration']} ms")

        # Check for potential issues
        if progress['processedRowsPerSecond'] < 100:
            print("WARNING: Low throughput detected")

    time.sleep(30)

# Check for exceptions
if query.exception():
    print(f"Query failed: {query.exception()}")
7.3 Graceful Shutdown
Properly stop streams to avoid data loss.
# Stop single query gracefully
query.stop()

# Stop all active streams
for stream in spark.streams.active:
    print(f"Stopping stream: {stream.name}")
    stream.stop()

# Wait for termination with timeout
try:
    query.awaitTermination(timeout=60)
except:
    print("Timeout waiting for stream termination")
8. Performance Tuning
8.1 Key Configuration Parameters
# Shuffle partitions (critical for performance)
spark.conf.set("spark.sql.shuffle.partitions", "auto")  # AQE auto-tune

# State store configuration for stateful operations
spark.conf.set("spark.sql.streaming.stateStore.providerClass",
               "com.databricks.sql.streaming.state.RocksDBStateStoreProvider")

# RocksDB tuning for large state
spark.conf.set("spark.sql.streaming.stateStore.rocksdb.compactOnCommit", "true")
8.2 Rate Limiting and Backpressure
Prevent overwhelming downstream systems.
# Kafka rate limiting
spark.readStream.format("kafka") \
    .option("maxOffsetsPerTrigger", "100000") \
    .load()

# Auto Loader rate limiting
spark.readStream.format("cloudFiles") \
    .option("cloudFiles.maxFilesPerTrigger", "100") \
    .option("cloudFiles.maxBytesPerTrigger", "10g") \
    .load()
9. Operational Runbook
9.1 Common Issues and Solutions
	Issue
	Symptom
	Solution

	OOM on Driver
	Driver crash
	Increase driver memory, reduce state

	Slow Processing
	Growing backlog
	Scale cluster, optimize transformations

	Checkpoint Corruption
	Stream won't start
	Delete checkpoint, restart from earliest

	Data Loss
	Missing records
	Check watermark settings

	Duplicates
	Same events twice
	Use idempotent writes (MERGE)



9.2 Monitoring Queries
-- Active streaming queries
SELECT id, name, status
FROM system.streaming.queries
WHERE status = 'ACTIVE';

-- Query progress metrics
SELECT
    query_id,
    batch_id,
    input_rows,
    processed_rows_per_second,
    batch_duration_ms
FROM system.streaming.query_progress
WHERE query_id = 'your-query-id'
ORDER BY batch_id DESC
LIMIT 20;
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